7. Recognize the potential limitations of AI and big data technologies
AI has distinct advantages in different segments of drug discovery, starting from improved disease understanding to a more efficient clinical trial design. But, despite its recent popularity, biostatisticians, computational biologists, and chemists have been acquainted with Machine Learning (ML) for decades. AI and big data in the pharmaceutical industry still have a range of limitations, and the analysis of large and annotated datasets inevitably poses some complex challenges. An inaccurate picture of AI’s strengths and weaknesses can create expectations for miraculous transformations. An inaccurate picture of AI’s strengths and weaknesses can create expectations for miraculous transformations. Therefore, new technologies shouldn’t be seen as a panacea, but rather a powerful instrument for living up to the potential of data science in pharma.
8. Promote strategic partnerships
Contextualizing internal data with the wealth of public data is key to the development of strong partnerships with other pharmaceutical companies and academic institutions. Your organization can publish relevant data and provide access to available instruments, and in this way, contribute to the biopharma community and promote new data solutions. Precompetitive and collaborative projects can become game-changers for the industry’s future. Major biopharma companies consider AI to be an instrument for collaboration.
The graph below illustrates AI-driven deals in the big pharma industry that happened in 2019.Figure 2. Deloitte analysis of deals disclosed in the market
The statistics show that major biopharma companies integrated AI into their discovery process by employing AI experts and data scientists, and building new opportunities for cooperation.
9. Provide data science teams with sufficient resources
No two projects in drug discovery are identical, so the implementation of data science for various purposes is bound to require specific expertise. The scope of a data scientist’s responsibilities may encompass engineering, curation, integration, analysis, and/or mining of data. Appropriate resourcing would mean that the company provides its professionals with datasets, software licenses, external collaborations, professional services, and the hardware necessary to achieve their specific objectives.