- Compliance can be seen as a burden. Drug discovery companies face a high bar of regulatory requirements while working with sensitive biomedical data. In addition, with the increase in remote work and collaboration via individual networks, organizations also face challenges in cybersecurity, so adhering to strict government protocols is often a top priority for manufacturers.
The below graph by Pharma Intelligence shows 58% of its survey respondents were not confident in the quality or completeness of their clinical data from an audit and compliance perspective.
Figure 2. The level of survey participants’ confidence in the quality of data from the perspective of data auditing and regulatory compliance by Pharma Intelligence
As the majority of respondents have little trust in the quality of data, the need for more effective data management strategies arises.
The future of drug development
Improved data management strategies allow tremendous progress in clinical developments as the demand for more efficient ways of analyzing massive datasets will only increase in the foreseeable future. What’s more, biopharma companies will capitalize on digitalization and manage clinical trials remotely. New data management tools will be based on Deep Learning (DL), Machine Learning (ML), and Natural Language Processing (NLP), which will serve as a foundation for more effective digital infrastructures. According to a recent Deloitte report, most AI startups working on biopharma R&D are currently focused on the drug discovery stage of the process. This advancement can result in more efficient drug approval rates, reduced development costs, and enhanced patient outcomes.
The explosive growth of data increases the burden on companies to have sufficient storage space and to remain cost-efficient. As one of the industry’s leading forces, AI will have a disruptive impact on drug development, enabling manufacturers to centralize clinical development and accumulate valuable datasets.
The graph below illustrates the digital technologies that will challenge the status quo in drug development from the short- and long-term perspectives.
Figure 3. AI-assisted technologies that are predicted to disrupt drug discovery in the next decade by the Deloitte Centre for Health Solutions
This graph from the 2020 Deloitte report highlights the continuous enhancement of data management practices, with automated data capturing, integration, and sharing, as well as workflow automation, that will be changing drug discovery in the next 5 years.